Επιστροφή στα Περιεχόμενα της Τριγωνομετρίας
Το παρόν υλικό μπορεί να χρησιμοποιηθεί στα πλαίσια μιας σύγκρισης και ανάδειξης πλεονεκτημάτων-μειονεκτημάτων ανάμεσα στο κλασικό, σελιδοποιημένο βιβλίο (φυσικών επιστημών ή τεχνολογίας) και το οπτικοακουστικό υλικό, για να θέσουμε στη συνέχεια το ερώτημα: θα μπορούσαν video-παρουσιάσεις να υποστηρίξουν τα σχολικά βιβλία ;
Υπάρχουν αρκετές έννοιες μαθηματικών των οποίων τα χαρακτηριστικά ή οι ιδιότητες παρουσιάζονται στα βιβλία με τρόπο που δεν ευνοεί την κατανόηση τους. Αυτό, θα λέγαμε ότι οφείλεται στους περιορισμούς του ίδιου του μέσου, δηλαδή του βιβλίου, και του τρόπου που είναι αποτυπωμένη η πληροφορία πάνω σ' αυτό. Η πληροφορία από την οποία προσπαθούμε να παράγουμε γνώση.
Ας αναρωτηθούμε, για παράδειγμα, αν οι παρακάτω καταστάσεις βοηθούν την διαδικασία μάθησης και συνεπώς την κατανόηση νέων εννοιών:
- Ξεκινάμε να διαβάσουμε μια ενότητα η οποία αναφέρει τα αρχικά γεωμετρικά στοιχεία κατασκευής ενός σχήματος, αλλά το σχήμα στο οποίο μας παραπέμπει, είναι στην τελική του μορφή, έχοντας όλα εκείνα τα στοιχεία που θα συναντήσουμε μελετώντας παρακάτω.
- Διαβάζουμε μια ενότητα κειμένου η οποία περιγράφει κάποια αποτελέσματα ή συμπεράσματα που προκύπτουν αν φανταστούμε κάποια μεταβολή σε γεωμετρικά στοιχεία των σχημάτων.
- Διαβάζουμε μια ενότητα κειμένου, για παράδειγμα μία απόδειξη, και ενώ τα σχήματα (στην τελική τους μάλιστα μορφή), μαζί με κάποια αρχικά αλγεβρικά δεδομένα (που θα χρειαστούν παρακάτω) βρίσκονται στην ίδια σελίδα, η απόδειξη συνεχίζεται στην πίσω σελίδα, κάνοντας αναφορές στα αλγεβρικά δεδομένα και τα σχήματα της προηγούμενης σελίδας.
Εκτός από τα παραπάνω, στην παρουσίαση που ακολουθεί μπορείτε να παρατηρήσετε ότι από ένα (σχολικό) βιβλίο μπορεί
- να λείπουν βασικές λεπτομέρειες/διευκρινήσεις για την κατανόηση (πχ ο ρόλος του τριγωνομετρικού κύκλου στη μελέτη της συνάρτησης ημιτόνου)
- κάτι που περιγράφεται δεν μπορεί να αποδοθεί με παραστατικό τρόπο. Για παράδειγμα : " Όταν το χ μεταβάλλεται από το 0 μέχρι το π/2, το Μ κινείται από το Α μέχρι το Β. Άρα η τεταγμένη του αυξάνει, ... ".
Για τη μελέτη της συνάρτησης ημιτόνου, παραθέτουμε τις σχετικές σελίδες του σχολικού βιβλίου (όχι της νέας έκδοσηςτου 2012, αλλά το περιεχόμενο είναι το ίδιο), πριν από τις video-παρουσίασεις. Μπορείτε να "γυρίσετε" σελίδα χρησιμοποιώντας το δρομέα στο κάτω μέρος της σελίδας.
Παλαιά video-παρουσίαση για τη μελέτη της συνάρτησης ημιτόνου (με PowerPoint, χωρίς ήχο):
Νέες video-παρουσιάσεις για τη μελέτη της συνάρτησης ημιτόνου (με GeoGebra και ήχο):
Εισαγωγικά
Βοήθεια Τριγωνομετρικού Κύκλου
Πληροφορίες από τον Τριγωνομετρικο Κύκλο για το Ημίτονο
Αντιστοιχία Τριγωνομετρικού Κύκλου και Καρτεσιανού Επιπέδου
"Μεταφορά" της γωνίας από τον Τριγωνομετρικό Κύκλο στο Καρτεσιανό Επίπεδο
01:11 "... η γωνία διαγράφεται με τη φορά ..." αντί του "... η φορά διαγράφεται με τη φορά ..."
"Μεταφορά" του Ημιτόνου από τον Τριγωνομετρικό Κύκλο στο Καρτεσιανό Επίπεδο
Μονοτονία της f(x)=ημx στο [0,2π]
Γραφική παράσταση της f(x)=ημx στο [0,2π]
Μέγιστο, Ελάχιστο και Σύνολο Τιμών της f(x)=ημx στο [0,2π]
Γραφική παράσταση στο σύνολο ορισμού - Ημιτονοειδής καμπύλη
03:27 " ... και στο 3π/2 , 2π ..." αντί του "... και στο π/2 , 2π ... "
f(x)=ημx : περιττή συνάρτηση με κέντρο συμμετρίας το Ο(0,0)
Συνέχεια με την video-παρουσίαση Βασικές Τριγωνομετρικές Εξισώσεις: ημx=α